360联合天津智慧城市数字安全研究院发布《全球人工智能安全治理》报告******
2023年1月10日,360天枢智库、天津智慧城市数字安全研究院、网络空间国际治理研究中心三方联合发布《全球人工智能安全治理》报告,报告站在全球视角的宏观高度纵览、分析和解读人工智能安全治理问题,提出人工智能发展面临十大安全挑战,旨在探索既能发挥人工智能技术效益又能控制其安全风险和负面影响的治理之道,是中国学术界和产业界对人工智能发展与安全的一次思想碰撞与深度探索,对人工智能安全治理具有积极指导意义。
在人工智能加速智能化变革的同时,针对人工智能的伦理规范、风险框架、以及治理理念和模式的探索成为各国学术界和政策界的重点工作。360首席安全官、天津智慧城市数字安全研究院院长杜跃进称,人工智能作为中、美、欧等国家或地区都在积极发展的关键新兴技术,其在发展过程中所产生的安全挑战也更为复杂多元,世界主要国家和地区已经将安全治理列为各自人工智能战略的优先事项。
目前,各国普遍关注的人工智能安全问题共十类,包括网络安全问题、企业合规问题、可解释性问题、隐私安全问题、声誉和伦理问题、未来劳动力问题、公平性问题、人身安全问题、社会稳定问题、以及国家安全问题。而以上挑战映射到人工智能的研发和应用过程,又可以划分为人工智能自身安全、衍生安全、以及人工智能赋能安全等核心安全挑战。
报告显示,作为一种数字技术,人工智能“双刃剑”特征明显,不仅自身存在数字安全威胁和隐患,随着人工智能工程化、场景化、平台化落地不断加快,人工智能安全需求已经超越单纯技术范畴。面对日趋复杂的安全挑战,人工智能安全治理难以一蹴而就,只有在实践中不断摸索,才能将人工智能安全风险遏制在可控范围。
报告对各国人工智能安全治理模式进行了深入剖析,针对上述问题,报告主要发现:美国流派在人工智能安全治理上采取的手段是在人工智能技术部署、使用与监测的全过程中都进行验证与监管,建立与之配套的规范体系;欧盟流派则更寄希望于运用监管框架与信任体系来对人工智能的安全进行规制,其规制更倾向于人权方向;相较美国与欧盟,中国流派的人工智能安全治理致力于形成内含研发、管理和应用的全流程安全保障体系,涵盖基础框架研制、基本安全原则、供应链管理实践指南、安全服务能力、应用领域的标准研制等各个方面。
为了避免人类社会发展被技术创新所“反噬”,也就是落入所谓的“科林格里奇困境”,产学研各界以监管和设置可操作性原则为主导,通过治理实践凝聚共识,探索人工智能安全治理的思路与模式。报告详细介绍了业界通用的各类风险治理思路,首先是基于未来风险预防的影响评估模式,其次是基于自主性原则的元监管模式,然后是基于透明追踪的AI系统预警模式。并由此细分出以用户为考虑重点的参与性设计和以政府为主导力量的敏捷治理两条路径。
在中国,360等多家人工智能龙头企业以自身实践构建行业安全案例,走出了技术赋能、行业规制、平台监测的多种道路。其中,360承建了科技部牵头成立的“安全大脑国家新一代人工智能开放创新平台”建设,集中解决各类人工智能发展问题,引领人工智能安全生态建设。
作为报告联合发起方,天津智慧城市数字安全研究院依托于新一代人工智能创新发展试验区核心区——中新天津生态城提供的丰富应用场景,紧紧把握新型城市发展规律和机遇,致力于促进人工智能与经济社会发展深度融合,助力打造“智慧城市国家级标杆区”。
随着数字经济成为改变全球竞争格局的关键力量,人工智能产业将得到更大发展。同时,人工智能安全治理也将得到全世界的关注和推动,《全球人工智能安全治理》报告作为相关领域的权威论著,也将为人工智能产业的健康发展贡献一份重要的力量。
张宏江:人工智能如何帮人类进入科研新范式?******
中新网北京12月10日电 “人工智能能够如何帮助我们进入科研的新范式?”
这是美国国家工程院外籍院士、北京智源人工智能研究院理事长张宏江,12月9日在2022人工智能合作与治理国际论坛的主题论坛“人工智能引领韧性治理与未来科技”中,抛出的一个问题。
2022人工智能合作与治理国际论坛由清华大学主办、清华大学人工智能国际治理研究院(I-AIIG)承办,中国新闻网作为战略合作伙伴,联合国开发计划署(UNDP)、联合国教科文组织(UNESCO)等国际组织、国内外学术机构支持。
美国国家工程院外籍院士、北京智源人工智能研究院理事长张宏江,在2022人工智能合作与治理国际论坛的主题论坛“人工智能引领韧性治理与未来科技”上发言。主办方供图张宏江认为,回顾人类科学发展的历史,不同发展阶段经历了不同的科学发现范式。
“几千年前,人类就通过观察、实验来描述自然现象。比如‘日心说’是通过对天象的观察来对整个宇宙。随着科学的发展,四五百年前,理论模型范式出现。人们通过对某一现象的观察总结出理论,从而指导新的科学研究。五六十年前,尤其当大型计算机出现后,面临更复杂的问题,比如天气预报、地震模拟,人们无法再用简单的物理公式、简单的方程构建完整的模拟系统研究理论,人们引入了计算范式,用计算来模拟的方式做科学研究。到二十年前,我们进入大数据时代,科研中积累的大量数据可以进一步驱动物理模型。”
“今天,我们进入了一个新的科研范式。”张宏江说,人工智能经过多年发展,尤其过去15年深度学习的发展,使得人们能够给科学研究推出一个新的范式。“这个范式是AI驱动的范式。实际是用深度学习的算法,直接从数据中建立新的模型,其背后是数据、模型、算法和算力。”
张宏江指出,深度学习在革命性地推动了语言、图像和视频处理、识别和应用之后,正在迅速地改变科学研究的范式,这种新的范式就是物理世界的“数字化+自动化+深度学习”。
他说,“今天我们进入了一个黄金期,新的设计范式,都可以借用深度学习的方法进行赋能。”
张宏江坦言,未来十年蕴含着科学发展与产业创新机会,包括数据、模型、算法、算力,其核心是背后的跨学科人才。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |